skip to main content


Search for: All records

Creators/Authors contains: "Dadmun, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polymeric materials have become an integral part of our society, and their high demand has created a large quantity of polymers that end up in the waste stream. For instance, poly(ethylene terephthalate) (PET) is widely used in a broad range of applications, where the chemical recycling of PET is of growing interest. Most methods focus on the complete depolymerization of PET to the monomer, however pushing the equilibrium reaction to the monomer is time- and energy-intensive. We hypothesize that by intercepting intermediates in the depolymerization, telechelic oligomers can be captured that can also be used as reactants to produce value-added goods. To this end, the effect of reaction type, catalyst loading, reaction time, and temperature on the evolution of the product chain structure and yield of the glycolysis depolymerization of PET is studied. For a heterogeneous reaction at lower temperatures (165 °C), the rate of depolymerization is sufficiently slow to offer access to a broad range of molecular weight products (3000–10 000 Daltons) at a high yield (nearly 100%). At higher heterogeneous reaction temperatures (175 and 185 °C), the reaction rate increases, producing oligomers of a narrower molecular weight range (2000–5000 Daltons) with significant loss of the original PET, up to 40%, as water soluble products. In the heterogeneous reaction, little change was observed when altering the catalyst loading at higher temperatures, but lower temperatures and decreased catalyst loading produce accessible higher molecular weight oligomers. Homogeneous catalysis of the glycolysis reactions increases the rate of depolymerization, such that it is difficult to isolate oligomers with M n > 1000 Daltons. The oligomers from heterogeneous reactions were used as reactants to form block copolymers with ethylene glycol, exemplifying their use as precursors in the production of value-added materials. These experiments, therefore, offer crucial insight into how reaction conditions can be readily tuned to produce target telechelic oligomers of PET. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Spin casting has become an attractive method to fabricate polymer thin films found in organic electronic devices such as field-effect transistors, and light emitting diodes. Many studies have shown that altering spin casting parameters can improve device performance, which has been directly correlated to the degree of polymer alignment, crystallinity, and morphology of the thin film. To provide a thorough understanding of the balance of thermodynamic and kinetic factors that influence the stratification of polymer blend thin films, we monitor stratified polymer blend thin films developed from poly(3-hexylthiophene-2,5-diyl) and poly(methyl methacrylate) blends at controlled loading ratios, relative molecular weights, and casting speed. The structures of these thin films were characterized via neutron reflectivity, and the results show that at the fastest casting speed, polymer–polymer interactions and surface energy of the polymers in the blend dictate the final film structure, and at the slowest casting speed, there is less control over the film layering due to the polymer–polymer interactions, surface energy, and entropy simultaneously driving stratification. As well, the relative solubility limits of the polymers in the pre-deposition solution play a role in the stratification process at the slowest casting speed. These results broaden the current understanding of the relationship between spin casting conditions and vertical phase separation in polymer blend thin films and provide a foundation for improved rational design of polymer thin film fabrication processes to attain targeted stratification, and thus performance. 
    more » « less
  5. The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful. 
    more » « less